Abstract

Cryogen spray cooling (CSC) is used to pre-cool the epidermis during dermatological laser procedures such as treatment of port wine stain (PWS) birthmarks, hair removal, and non-ablative photorejuvenation. Thus far, heat transfer studies related to CSC optimization have assumed a flat surface but clinical observation suggests that human skin indents due to the force of an impinging cryogen spray. High-speed videos of cryogen spray impingement on in vivo human skin were taken and the resulting indentations characterized as a function of both nozzle-to-skin distance and anatomic location. Detectors with pre-formed indentations were constructed and heat flux measurements were performed at two nozzle-to-surface distances. Indentation causes cryogen accumulation that reduces the efficiency of heat transfer when compared to spray impingement on a flat surface. Large indentations, however, encourage convective flow within the cryogen pool that mitigates many of the negative effects of liquid layer thickening and improves the heat flux. Flat surfaces produce the most efficient heat transfer, but once indentation exists (as it does in all clinically relevant cases), larger indentations produce a higher maximum heat flux. This suggests that higher momentum sprays (which produce larger skin indentations for identical spurts) than those in current clinical use may improve CSC efficiency.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call