Abstract
Two-dimensional disordered granular assemblies composed of 2048 polydispersed frictionless disks are simulated using the discrete element method. The height of the first peak of the pair correlation function, g1, the local and global bond orientational parameters ψ6l and ψ6g, and the fluctuations of these parameters decrease with increasing polydispersity s, implying the transition from a polycrystalline state to an amorphous state in the system. As s increases, the peak position of the boson peak ωBP shifts towards a lower frequency and the intensity of the boson peak D(ωBP)/ωBP increases, indicating that the position and the strength of the boson peak are controlled by the polydispersity of the system. Moreover, the inverse of the boson peak intensity ωBP/D(ωBP), the shear modulus G, and the basin curvature SIS all have a similar dependence on s, implying that the s dependence of the vibrational density of states at low frequencies likely originates from the s dependence of the basin curvature.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.