Abstract

Here we document and explain interactions between two thermodynamic trends that determine the optimum performance of refrigeration and heat pump systems. We show analytically why the performance of the system must increase with the size of the installation. The second law efficiency of heat pump systems must increase with their size. We also show that the power requirement for a specific ground-coupled heat pump system must decrease as the size of the ground heat exchanger increases. From these two trends emerges the tradeoff between the size of the heat pump and the size of the ground heat exchanger. The challenge is to find the optimum size of the ground-coupled heat pump. We show numerically the optimum heat pump size and the ground heat exchanger size that correspond to minimum total power requirement subject to a cost constraint.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.