Abstract

Bac7 is a proline-rich antimicrobial peptide, selective for Gram-negative bacteria, which acts intracellularly after membrane translocation. Progressively shortened fragments of Bac7 allowed determining the minimal sequence required for entry and antimicrobial activity as a 16-residue, N-terminal fragment, while further shortening led to a marked decrease in both functions. Furthermore, two N-terminal arginine residues were required for efficient translocation and activity. Analogues in which these residues were omitted, or where the side chain steric or physicochemical characteristics were systematically altered, were tested on different Escherichia coli strains, including a mutant with a destabilized outer membrane and one lacking the relevant SbmA membrane transport protein. H-bonding capacity, stereochemistry, and charge, in that order, played a determining role for efficient transit through both the outer and cytoplasmic membranes. Our studies allowed building a more detailed model for the mode-of-action of Bac7, and confirming its potential as an anti-infective agent, also suggesting it may be a vehicle for internalization of other antibiotic cargo.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.