Abstract

Analytical studies were made on effect of size and location of a weld defect on fatigue life for argon-arc welded titanium alloy joint. In the analyses, a weld defect was assumed as an initial crack, and the crack growth life was taken as total fatigue life. By using the Isida and Noguchi’s stress intensity factor solution for a plate containing an embedded elliptical subsurface crack under tension, the life prediction code FASTRAN3.9 was revised. A small crack methodology based on the plasticity-induced crack-closure concept and the effective stress intensity factor range, Keff , was used to predict the total fatigue life of welded joint, and to study the effect of the size and location of weld defect on fatigue life by means of the revised FASTRAN3.9 code. Limited amounts of experimental data were used to make comparison with the predictions. The predicted fatigue lives are in reasonable agreement with experiments, and the effect of both the size and location of the weld defect on fatigue life was found to be significant.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.