Abstract

The aim of the present study was to investigate the effects of transketolase (TKT) on cell proliferation, cell migration and interaction with other metabolism-associated genes in A549 lung cancer cells. A549 cells were transfected with three TKT-specific small interfering (si)RNAs, screened for the optimal transfection concentration, and sequenced with flow cytometry and reverse transcription-quantitative polymerase chain reaction (RT-qPCR). Cell viability was evaluated using Cell Counting Kit-8 (CCK-8), cell cycle was assessed by flow cytometric analysis. Cell migration was determined by scratch-wound and Transwell chamber assays. The changes in mRNA expression levels of glucose-6-phosphate dehydrogenase (G6PDH), transaldolase (TAL), sorbitol dehydrogenase (SORD), phosphoribosyl pyrophosphate synthetase 1 (PRPS1) and hexokinase 1 (HK1) were detected by RT-qPCR. siRNA-C at 50 nmol/l was selected for the subsequent experiments. Compared with the negative control, cell proliferation of the TKT-siRNA-C group was inhibited dramatically (CCK-8 24 h, 0.2984±0.0371 vs. 0.0952±0.0063; P<0.0001), the cell cycle was arrested at the G1/G0 cell cycle phase (58±2.0% vs. 70±2.5%; P=0.002), and cell migration ability was decreased [wound size, 254.71±34.96 vs. 349.12±37.43 µm (P=0.0001); Transwell migration, 250±47.8/field vs. 150±49.0/field (P<0.0001)]. The mRNA expression levels of G6PDH, TAL, SORD, PRPS1 and HK1 were downregulated in the TKT-siRNA-C group compared with the negative control. The present study revealed that synthetic TKT-siRNA can inhibit A549 cell viability and migration, which may be due to arrest of the cell cycle and downregulation of relevant metabolic enzymes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.