Abstract

Abstract In this paper, SiO2 nanoparticle doped polymer dispersed liquid crystal (PDLC) lenses were made from a mixture of prepolymer, E7 liquid crystal and SiO2 nanoparticles by the polymerization induced phase separation (PIPS) process for smart electronic glasses with auto-shading and auto-focusing functions. Electro-optical properties of doped and undoped samples including transmittance, driving voltage, contrast ratio and slope of the linear region of the transmittance-voltage were measured, compared and analyzed. Driving voltage of SiO2 nanoparticle doped PDLC lenses moderately improved. But the slope of linear region, response time and contrast ratio deteriorated, especially the latter two. It can be assumed that these doping effects were due to the mechanistic change from liquid-gel separation to liquid-liquid separation by the fast heterogeneous nucleation rate caused by the increased nucleation at the surface of SiO2 nanoparticles. The marked deteriorations of falling response time and contrast ratio were due to well defined liquid crystal molecules in LC droplets, which induced slow and imperfect random rearrangement of LC molecules at the off state.

Highlights

  • Recent studies of smart electronic glasses (E-glasses) with various functions have been reported [1-7]

  • Using polymer dispersed liquid crystal (PDLC) lenses, we have studied smart electronic glasses with auto-shading and auto-focusing functions [1,2]

  • 3 Results and discussion With the concentration of SiO2 nanoparticles ranging from 0–2.0% weight in 0.5% increments, the optical transmittance - applied voltage curves of the PDLC devices for 40% NOA 65 - 60% E7 LC cured by UV intensity of 580 μW/cm2 (Figure 1)

Read more

Summary

Introduction

Recent studies of smart electronic glasses (E-glasses) with various functions have been reported [1-7]. Eglasses with auto-shading and auto-focusing functions have been developed for shortsighted people and applications. Auto-shading is the ability of the e-glasses to automatically increase or decrease the amount of external light, through automatic opening and closing of the aperture when the external light is strong and weak, respectively. Auto-focusing refers to the automatic modulation of the focal length with the distance from the subject. Using polymer dispersed liquid crystal (PDLC) lenses, we have studied smart electronic glasses with auto-shading and auto-focusing functions [1,2]. The electro-optical properties can be further improved. To enhance electro-optical properties of PDLC lenses, such

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.