Abstract

A lithium ion conducting borosilicate glass was fabricated by a conventional melt quenching technique from a mixture of Li2CO3, B2O3 and SiO2 powders. The Li ion conductivity of the lithium borosilicate glasses was evaluated in terms of the SiO2/ B2O3 ratio. In the Li2O-B2O3-SiO2 ternary glass, the glass forming region decreases with an increasing Li2O content. At the same Li2O, the crystallization tendency of the glass samples increases with the SiO2/B2O3 ratio, resulting in a reduced glass forming region in the Li2O-B2O3-SiO2 ternary glass. The electrical conductivity moderately depends on the SiO2/B2O3 ratio in the Li2O-B2O3-SiO2 ternary glass. The conductivity of the glasses slightly increases with the SiO2/B2O3 ratio. The observed phenomenon can be explained by the modification of the glass structure as a function of the SiO2 content.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.