Abstract

Micro-fluidic devices integrated with on-chip control circuitry have been widely used in various biological and chemical synthesis applications. The objective of this paper is to investigate the effect of gravity, temperature, pulse width modulation (PWM) and sinusoidal excitations on the flow of methanol, ethanol and chloroform through an indigenously fabricated Cu-Mica micro-channel for automatic identification of fluids. For PWM vibrations, chloroform takes comparatively lesser time to flow across the given micro-channel that verifies that the velocity of the fluids is not a monotonic function of the PWM frequency. For sinusoidal excitations, ethanol exhibits maximum velocity around the frequency 1.5 KHz. The minimum velocity is shown at 4.5 KHz. For methanol, maximum Original Research Article Arya et al.; AIR, 4(4): 255-264, 2015; Article no.AIR.2015.080 256 velocity observed is around 2.5 KHz and minimum at 3.5 KHz. Chloroform shows no visible effect of excitation in its flow velocity. As velocity profile for a given set of influencing factors is fluid dependent, micro-channel based sensors may be developed for automatic identification of liquids.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call