Abstract

AimBioceramic root canal sealers like BioRoot RCS have received significant attention for use in endodontics. The addition of a nanophase material like multi-walled carbon nanotubes (MWCNTs) and titanium carbide (TC) to its matrix combined with pressureless sintering might have the potential for improved physiochemical, microstructure, and compressive strength properties. Methodology: MWCNTs and TC nanomaterials were added at a percentage of 1 wt% to a definite weight of pristine BioRoot RCS. Two composites were prepared by ball milling followed by pressureless sintering in static nitrogen at temperatures 600 °C and 800 °C. The setting time, solubility, pH, compressive strength, and density were determined and compared to pristine BioRoot RCS. The microstructural properties of the composites were investigated by XRD, FTIR, Raman spectroscopy, and SEM. ResultsThe final setting time before and after sintering at 600 °C of the composites was accelerated compared to Bioroot RCS (p = 0.016). The solubility of Bioroot/TC sintered at 600 °C was the lowest (p = 0.07) and its compressive strength was the highest among the sintered samples (p = 0.01). The incorporation of MWCNTs and TC had a significant increase in the compressive strength of Bioroot RCS (p < 0.05). ConclusionThe obtained results support the addition of nanomaterials to Bioroot RCS and the use of pressureless sintering.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.