Abstract

Sintering behavior of supported and unsupported microfiltration membranes prepared from 3 mol% yttria doped zirconia powder was investigated as a function of temperature and holding time in non-isothermal and isothermal densification. Shrinkage that started at 1000°C showed the highest rate between 1200°C and 1300°C although the rate decreased above 1300°C. The activation energy of sintering was calculated at 735 kJ/mol, assuming the grain boundary diffusion mechanism for mass transport. Mean pore size decreased in unsupported membranes and increased in supported ones as the sintering temperature increased up to 1200°C. Dimensional shrinkage of unsupported membrane slabs showed an increase in shrinkage first in the lateral dimension and then in the thickness as the sintering temperature increased. Pore growth and lower hardness in supported membranes, can be explained due to the restricted lateral shrinkage in the supported membranes. Removal of porosity was pronounced above 1100°C and the density increased linearly as a function of holding time. Microhardness of membranes sintered above 1100°C increased as a function of sintering temperature and was higher in unsupported membranes. Samples sintered above 975°C had a100% tetragonal phase structure. Permeability of supported membranes increased as a function of sintering temperature due to pore growth despite a decrease in porosity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.