Abstract

Statement of problemAdvances in dentistry have led to more esthetic and biocompatible restorative materials such as translucent zirconia and to faster and more accurate manufacturing methods. How changes in the surface and optical properties of translucent zirconia affect the esthetics and durability of these restorations under different conditions and manufacturing processes is unclear. PurposeThe purpose of this in vitro study was to evaluate the effect of the sintering speed, aging process, and different surface treatments on the translucency and surface structure of monolithic zirconia restorations. Material and methodsPrepared typodont teeth were scanned, and 40 three-unit fixed partial dentures (FPDs) and 40 disk specimens were designed and prepared from monolithic zirconia blanks. The specimens were divided into traditional or speed sintering groups (20 FPDs and 20 disks each); half of each group (10 FPDs and 10 disks) was polished with a handpiece at 10 000 rpm, and the other half was glazed. Half of the specimens were thermocycled with 3500 cycles in 5 °C and 55 °C water baths, and the remaining half were not thermocycled. Translucency was measured with a spectrophotometer. Surface free energy was calculated in mNm with a contact angle device; surface roughness was measured in nm with an atomic force microscope. Translucency data were analyzed by the Kruskal-Wallis and Mann-Whitney tests, while surface free energy and surface roughness data were analyzed by 3-way ANOVA (α=.05). ResultsThe highest transmittance was in the speed sintered, polished, nonthermocycled group, and the lowest transmittance was in the speed sintered, polished, thermocycled group (P=.029). The transmittance of the traditionally sintered, polished, nonthermocycled group was significantly higher than that in all the speed sintered, glazed groups; the traditionally sintered, glazed groups; and the traditionally sintered, polished, thermocycled group (P=.029). The transmittance of the traditionally sintered, polished, thermocycled group was significantly higher than that of all traditionally sintered, glazed groups (P=.029). The mean surface free energy in the traditionally sintered groups was higher than that in the speed sintered groups (P=.002); also, it was higher in the glazed groups than in the polished groups (P<.001). The aging process decreased surface free energy (P=.023). The mean surface roughness in the speed sintered groups was significantly lower than that in the traditionally sintered groups (P=.004). No significant difference in surface roughness was found between the polished and glazed groups and between the 2 variables of the aging process (P>.05). ConclusionsSpeed sintering and polishing may decrease the surface free energy and increase the translucency of the monolithic zirconia restoration. Also, speed sintering creates a smoother surface. Aging had a more significant effect on decreasing the surface free energy of the specimens and could make the least translucent restorations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call