Abstract

The Si3N4-BN composites have been prepared via die pressing and precursor infiltration and pyrolysis route using borazine as precursor, and the effect of sintering additives on properties of the composites has been investigated. After sintering additives are adopted, the α to β phase transition of Si3N4 and the mechanical properties of the composites at both room temperature and high temperature are all increased with small extent. When using Y2O3+Al2O3 as additives, the phase transition of Si3N4 and the mechanical properties of the composites have better results. The β-Si3N4 content is 17.47%. The flexural strength, elastic modulus and fracture toughness of the composites are 188.74 MPa, 84.34 GPa and 2.96 MPa·m1/2, respectively. After exposed at 1 000 °C in the air for 15 min, the flexural strength of the composites is 154.62 MPa with a residual ratio of 81.92%. The elongated β-Si3N4 grains appear in all composites with different sintering additives. Relatively more rod like β-Si3N4 grains can be observed in composites with Y2O3+Al2O3 as additives, making it to possess better mechanical properties.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.