Abstract

Structures consisting of single Poly(vinylidene fluoride) (PVDF) chains, single wall carbon nanotubes (SWCNTs), a PVDF chain interacting with a SWCNT and of five PVDF chains arranged to resemble the α and β crystal structures of PVDF were evaluated using geometry optimizations and single point energy calculations. Density functional theory with dispersion correction was used for all calculations. The conformer of PVDF is the lowest energy structure, irrespective of whether the SWCNT is present or not. Interaction with the SWCNT reduces the energy difference between the β and α conformers by approximately 30%, indicating that SWCNTs can increase the relative amount of the β conformers at higher temperatures. However, even in the presence of the SWCNT this energy difference is approximately 1.67 kcal/mol per –CH2CF2– repeat unit, which is larger than kT at 300 K (0.6 kcal/mol). Hence, the presence of the SWCNTs is not expected to substantially increase the relative amount of the β conformers at these conditions. Compression of the α and β crystal structures, which occurs during fibre extrusion, and which may be increased if nanoparticles are present in the polymer matrix, further decreases the energy difference between the β and α conformers but only to a very small extent at pressures relevant to fibre extrusion.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call