Abstract
The endogenous circadian rhythm of melatonin in mammals provides information regarding the resetting response of the mammalian circadian timing system in response to the changes in light dark cycle. Photoperiodic changes are reported to have acute and chronic effect on melatonin rhythm. Our aim in present experiment was to study the effect of single light pulse of low intensity on the circadian variation of melatonin in Indian palm squirrel. A short pulse of 5min was given to the animals at 22:55 h on day 16th in natural photoperiodic condition of long day length (LD ~ 13.55:10.05) and melatonin levels were estimated at every 4-h interval on ZT scale on day 17th (DD). Observations suggest that the light pulse given on day 16th suppressed the melatonin level on day 17th (DD). Besides this, it was also found that there was phase delay in the peak value of melatonin. Further, we tested the ability of single melatonin injection on the light pulse induced phase shift of acrophase of melatonin in this species F. pennanti. We injected the single physiological dose of melatonin (25 microgram/100 g body wt.) just 5 min prior to the commencement of light pulse (22:50 h) on day 16 and melatonin levels were estimated on day 17th as above. Injection of melatonin prior to light pulse altered the suppressing and phase shifting effect of light in terms of peak concentration of melatonin in squirrels. Above data may lead us to conclude that the biological clock mechanism controlling circadian rhythm of melatonin in this rodent is in response to the phase shifting effect of light and acute melatonin treatment. Further, we may suggest that single melatonin injection has the capability to entrain melatonin rhythm but a dose dependent study is required to facilitate the suggestion.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.