Abstract

Pd coated Nb-base composite membranes are preferable in the fields of hydrogen permeation. However, the rapid reduction of hydrogen permeability caused by high-temperature interfacial diffusion of Pd and Nb atoms hinders their large-scale application. In this paper, a single atomic layer graphene film was used for improving the thermal stability of a hydrogen-permeable composite membrane comprising a Pd coating on the Nb substrate. First, the graphene film was transferred onto the surface of the “clean” niobium substrate. Then a thin palladium coating was deposited on it by magnetron sputtering to form the niobium/graphene/palladium (Nb/Gr/Pd) composite membrane. The interfacial stability was evaluated in the temperature range of 673–973 K under vacuum, and the hydrogen permeation behavior was studied by gas-driven permeation method at 573–823 K. The results show that the single atomic layer graphene film can effectively compress the interdiffusion of Pd coating and Nb substrate and achieve a good hydrogen permeability below 823 K. However, it would be broken due to the micro-deformation of Nb substrate, the high mobility of Pd atoms, and the grain growth at a higher temperature. Therefore, it is concluded that the single atomic layer graphene film is unsuitable as an intermediate hindering layer for Nb-based hydrogen-permeable membranes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.