Abstract

In this study, we investigated the effects of simvastatin on proliferation, migration, and apoptosis in human U251 and U87 glioma cells and the underlying molecular mechanism. We used colony formation assay to test the cell proliferation, in vitro scratch assay to examine the cell migration, and caspase-3 activity assay, annexin V staining, and cytochrome C release to evaluate the cell apoptosis. Lipid raft fractions were isolated from glioma cells. Total cholesterol content assay was used to test the change of cholesterol level in lipid raft fractions. Immunocytochemistry staining was performed to detect the changes of lipid rafts in cell membranes. Western blotting analysis was performed to examine the signal transduction both in cells and in lipid raft fractions. Simvastatin inhibited proliferation and migration of U251 and U87 cells dose dependently. Simvastatin induced an increase of caspase-3 activity and annexin V staining, and down-regulated the phosphatidylinositol 3-kinase (PI3K)/Akt pathway. Simvastatin also decreased cholesterol content in lipid raft fractions, suppressed caveolin-1 expression in the lipid rafts, and induced Fas translocation into lipid rafts, suggesting that simvastatin may inhibit the prosurvival PI3K/Akt pathway and trigger caspase-3-dependent apoptotic cell death through the modulation of lipid rafts. These results suggest that modulation of lipid rafts, Fas translocation, and PI3K/Akt/caspase-3 pathway are involved in the antitumor effect of simvastatin and may have a potential role in cancer prevention and treatment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call