Abstract

The combined effects of temperature and ammonia concentration on the percent fertilization and percent hatching in Crassostrea ariakensis were examined under laboratory conditions using the central composite design and response surface methodology. The results indicated: (1) The linear effects of temperature and ammonia concentration on the percent fertilization were significant (P<0.05), and the quadratic effects were highly significant (P<0.01). The interactive effect between temperature and ammonia concentration on the percent fertilization was not significant (P>0.05). (2) The linear effect of temperature on the percent hatching was highly significant (P<0.01), and that of ammonia concentration was nonsignificant (P>0.05). The quadratic effects of temperature and ammonia concentration on the percent hatching were highly significant (P<0.01). The interaction on the percent hatching was not significant (P>0.05). Temperature was more important than ammonia in influencing the fertilization and hatching in C. ariakensis. (3) The model equations of the percent fertilization and hatching towards temperature and ammonia concentration were established, with the coefficients of determination R2=99.4% and 99.76%, respectively. Through the lack-of-fit test, these models were of great adequacy. The predictive coefficients of determination for the two model equations were as high as 94.6% and 98.03%, respectively, showing that they could be used for practical projection. (4) Via the statistical simultaneous optimization technique, the optimal factor level combination, i.e., 25°C/0.038mgmL−1, was derived, at which the greatest percent fertilization 95.25% and hatching 83.26% was achieved, with the desirability being 97.81%. Our results may provide advantageous guidelines for the successful reproduction of C. ariakensis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call