Abstract

Primary steps of exciton formation in organic solar cells are presented here. The rates of absorption of photons to excite singlet and triplet excitons are derived using exciton-photon and exciton-spin-orbit-photon-interaction, respectively, as perturbation operators. In both singlet and triplet absorptions, the rates are found to depend on the absorption energy, excitonic Bohr radius, and the dielectric constant of the donor organic material. Incorporation of heavy metal atoms enhances the exciton-spin-orbit-photon interaction and hence the rate of excitation of triplet excitons because it depends on the square of the heaviest atomic number. The new exciton-spin-orbit-photon interaction operator flips the spin to a singlet form leading to faster dissociation into charge carriers and resulting in higher photon to electron-hole pair conversion efficiency in organic solar cells.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call