Abstract
The goal of the present study was to explore how simulator motion cuing affects the driver's control performance of a car. Steering behavior was used as a measure of control performance. The experimental task was a slalom maneuver in which the velocity of the car was limited to 70 km/h. Subjective and objective variables were measured. The paper describes the objective steering behavior. The slalom task was driven under four conditions in which the lateral motion scale factors were 1 (one-to-one lateral motion), 0.7, 0.4, and 0 (no-motion), respectively. In total, 16 participants completed the experiment. The study showed that the motion condition affects the steering wheel behavior. The general tendency is that less steering correction took place when the magnitude of the motion cues was increased, which was quantified by two performance indicators. First, the number of steering wheel reversals was reduced when the motion cue magnitude was increased. Second, the amount of relatively high-frequency correction was reduced with increasing motion cue magnitude. It is concluded that motion feedback can improve the driver's control performance in an extreme scenario such as a slalom maneuver. Therefore, the effect of motion on control performance must be considered when a driving simulator study addressing control performance is designed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Transportation Research Record: Journal of the Transportation Research Board
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.