Abstract

The aim of this in vitro study was to investigate the effect of the cariostatic and preventive agent silver diamine fluoride (SDF) on the microtensile bond strength of resin composite to dentin. Forty-two caries-free, extracted molars were flattened occlusally and apically using a diamond saw, and the exposed occlusal dentin was polished with a series of silicon carbide papers, all under water irrigation. The teeth were then randomly divided into six groups of seven teeth each that were treated as follows: 1) Peak SE self-etch bonding agent; 2) 12% SDF + Peak SE; 3) 38% SDF + Peak SE; 4) Peak LC etch-and-rinse bonding agent; 5) 12% SDF + Peak LC; and 6) 38% SDF + Peak LC. Four-millimeter buildups of Amelogen Plus were incrementally placed on all teeth; after a 24-hour storage period in distilled water, the specimens were sectioned perpendicular to the adhesive interface to produce beams of cross-sectional surface area measuring approximately 1 mm(2). The beams were placed on a microtensile testing machine, which utilized a single-speed pump motor and force gauge at 20 kgf × 0.01 second to record maximum tensile force before failure occurred. Two-way analysis of variance and post hoc Tukey tests were performed to compare the effects of the SDF on microtensile bond strength, with statistical significance set at α = 0.05. None of the experimental groups treated with different concentrations of SDF showed a significant difference in bond strength compared to the control groups, and there was no significant difference in bond strength between self-etch and etch-and-rinse groups. However, the effect of SDF on self-etch bonded teeth compared to etch-and-rinse bonded teeth was statistically significant (p=0.0363), specifically at the 12% concentration. SDF does not adversely affect the bond strength of resin composite to noncarious dentin.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.