Abstract

Liquid phase sintering of M3/2 grade high speed steel (HSS) was carried out at 1270°C in high vacuum reaching near full density starting from loose packed powder. Focus is placed on the study of the effects of the addition of Si, Ni and V as elemental powder and cooling rates on the as sintered microstructure, the main objective being improving M6C characteristics and control of pearlite appearance. Slow cooling from the sintering temperature and Si addition in wt% resulted in a completely fine pearlitic matrix with less elongated and more uniformly distributed M6C precipitates. Adding V or Ni in wt-% quantities decreased the amount of pearlite owing to MC formation and delayed pearlite formation. The study involved the use of thermodynamic modelling and sintering cycle optimisation as well as the evaluation of sintered material by means of optical and scanning electron microscopy, X-ray diffraction and hardness testing.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.