Abstract

Iron oxides play an important role in controlling P activity and availability in environmental systems. Two iron oxides (goethite and ferrihydrite) were synthesized characterized by X-ray diffraction, transmission electron microscopy and N2 adsorption method. To investigate the effect of silicon on phosphorus adsorption of them, batch equilibration method was used. Attempts were made to explore the mechanisms involved by eliminating effects of pH and accompany ions. Results reveal that the ability of two kinds of iron oxides adsorbed phosphorus were as follows: ferrihydrite > goethite. Compared with the control, silicon inhibited the adsorption of phosphorus on two iron oxides, and this effect increased with the increasing of silicon content. Langmuir, Freundlich and Temkin equations could be used to describe the adsorption characteristics of phosphorus on iron oxides well, but the Langmuir model was optimal. With silicon addition, the adsorption equilibrium constants (K) decreased of the phosphorus absorbed on iron oxide, the free energy(ΔG)dropping degree increased, the maximum adsorption capacity(Xm)and maximum buffering capacity (MBC) reduced.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.