Abstract

The aim of this article is to present the beneficial effect of a reduction of silicon content on coarse-grained heat-affected zone (CGHAZ) toughness. This study was achieved with experi-mental and industrial E355 structural steels. These 0.09 wt pct C steels were Ti-microalloyed with silicon contents ranging from 0.05 to 0.5 wt pct. First, we demonstrate that the CGHAZ toughness is predominantly affected by the volume fraction of retained austenite (γr). Second, we show that the existence of retained austenite pertains only to its carbon enrichment. This enrichment is promoted essentially by an increase of the silicon level due to the retarding action of silicon on the formation of carbides in ferrite as well as in austenite. In the same way, the increase of silicon content slows down the decomposition of retained austenite into pearlite. The reduction of the silicon content of the steel greatly increases the ductility of the CGHAZ through the decrease of the volume fraction of retained austenite.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call