Abstract

Effect of silicon content on the microstructure (lamellar and flake), mechanical (microhardness, ultimate tensile strength) and electrical resistivity properties of Al–Cu–Fe–Si quaternary alloys has been investigated. Al–26Cu–0.5Fe–xSi (x = 6.5, 8, 10, 12 and 14 wt %) were prepared using metals of 99.99% high purity in the vacuum atmosphere. These alloys were directionally solidified under constant temperature gradient (8.50 K/mm) and growth rate (8.25 μm/s) by using a Bridgman–type directional solidification furnace. Eutectic spacing, microhardness, ultimate tensile strength and electrical resistivity were expressed as functions of composition. The dependency of the eutectic spacing, microhardness, tensile strength and electrical resistivity on the composition (Si content) were determined. According to experimental results, the microhardness, ultimate tensile strength and electrical resistivity of the solidified samples increase with increasing the Si content, but decrease eutectic spacing. Variation of electrical resistivity with the temperature in the range of 300–650 K for studied alloys was also measured by using a standard d.c. four−point probe technique.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.