Abstract

Properties of RbNO 3 and CsNO 3 in (1− x)MeNO 3– xSiO 2 ( x=0–0.9) nanocomposite solid electrolytes were studied by X-ray powder diffraction, differential scanning calorimetry methods and conductivity measurements. The used highly-dispersed silicas with narrow pore size distribution were different in their specific surface areas (13–580 m 2/g) and pore size ( R=14–1000 Å). The composite conductivity was shown to exceed that of individual salts by more than 1.5–4 orders of magnitude and to be maximum at x=0.5–0.7. In nanocomposites based on alkali nitrates and silica the ‘dimensional effect’ was observed. The properties of composites depended markedly on pore size of silica. The optimum pore size of heterogeneous dopant was in a range of 35–100 Å, where the most composite conductivity increase took place and thermodynamic and structural properties of ionic salts changed markedly. For composites based on these silicas the enthalpies of RbNO 3 (CsNO 3) phase transitions and melting decreased considerably. The ionic component became either partially or completely amorphous (in particular with x increase). The MeNO 3 state changed slightly when the SiO 2 pore size was 1000 Å. In systems with pore size 14 (both crystalline low temperature RbNO 3(IV) and amorphous salt were observed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.