Abstract

Abstract S-(thiobenzoyl)thioglycolic acid was used to synthesize poly(methyl methacrylate) via reversible addition-fragmentation chain transfer (RAFT) polymerization. To study the polymerization kinetics, in situ polymerization reactions were performed with different loading of nanoparticles. To investigate the effect of surface modification on the poly­merization kinetics, similar reactions were performed with 3-methacryloxypropyldimethylchlorosilane-modified nanoparticles. Conversion, reaction rate, molecular weight and polydispersity index (PDI) were monitored during poly­merization. According to results, pseudo-first order kinetics is achieved, but the rate constant of chain transfer reaction to the RAFT agent (Ctr) has a very small value. Adding nanoparticles causes no considerable change in the kinetic curves, while there is an optimum value for nanoparticles loading in which the polymerization rate reaches its maximum level. A similar trend is observed for molecular weight; however, increasing silica content results in an increase in PDI values. In comparison with pristine silica nanoparticles, the polymerization rate increases slowly in the case of modified particles. Also, molecular weight and PDI for free and graft chains are studied separately. The molecular weight of free chains increases with increasing nanoparticles loading up to 7 wt% and then decreases, while PDI values increase continually by adding nanoparticles. However, for graft chains, molecular weight and PDI values increase with increasing nanoparticle content.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.