Abstract
The scope of this study was to prepare different organosilane-modified Fe3O4@SiO2 core magnetic nanocomposites with immobilized lipase and explore their potential application in biodiesel field. Fe3O4 magnetic nanoparticles prepared by co-precipitation method were coated with various ratios of SiO2 as per Stöber method and further functionalized by different organosilane compounds APTES (3-aminopropyltriethoxysilane) and MPTMS (3-mercaptopropyltrimethoxysilane). Functionalized Fe3O4@SiO2 magnetic nanoparticles were immobilized with free lipase NS81006 by glutaraldehyde cross-linking reagent. The functional groups, structure, morphology and magnetic susceptibility of synthesized and modified Fe3O4@SiO2 magnetic nanoparticles were characterized by FTIR, XRD, SEM, TEM, and VSM techniques. The immobilization efficiency and activity recovery were reduced by increasing the ratio of silica coating on Fe3O4. Maximum activity recovery (84% by APTES, 83% by MPTMS) and biodiesel yield (>90%) were obtained by lipase immobilized on Fe3O4@SiO2 support when the Fe3O4 and SiO2 (TEOS) ratio was low (1:0.25).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.