Abstract
Five different types of silica catalyst (SBA-15, SBA-15-PO3H2, and three different Si/Al ratio of commercial zeolites (30, 80 and 280) were used to study the transformation of methanol to hydrocarbon (MTH). The aim of this study was to investigate the effect of pore diameter and acidity in the structure of silica catalysts on the process performances in terms of methanol conversion and hydrocarbon selectivity. The mesoporous silica catalysts were prepared by co-condensation method. The catalysts samples were characterized by GC-MS, XRD, BET, and NH3-TPD techniques. The catalytic performance of synthesized and commercial catalysts for MTH process was evaluated using a homemade fixed bed reactor at temperature (300°C). It was found that the liquid hydrocarbon product provided by zeolite catalysts is aromatic hydrocarbons-rich. High Si/Al zeolites with larger pore size lead to higher selectivity and yield to paraffins (C1-C7). In contrast to commercial zeolite catalyst, SBA-15 and its modification with phosphorus species showed no conversion under studied condition. These results indicate that both pore diameter and acidity influence the product distribution in methanol to hydrocarbon process.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.