Abstract
Sildenafil, a highly selective inhibitor of PDE 5, is effective in the treatment of erectile dysfunction. Penile erection involves relaxation of smooth muscle of corpus cavernosum and its associated arterioles. The objective of this study was to investigate the effect of sildenafil on nitric oxide/cyclic guanosine monophosphate (NO/cGMP)-dependent relaxation of rat aortic rings. The contribution of sildenafil to the vasorelaxation of rat aortic rings was also investigated. Sildenafil produced significant potentiation of acetylcholine (ACh, 2 x 10(-6) m)-induced relaxation at concentration > or =1 x 10(-8) m. Addition of sildenafil (1 x 10(-7) m) to aortic rings failed to alter the effect of N(G)-nitro-L-arginine (l-NNA, 3 x 10(-5) m) or methylene blue (MB, 3 x 10(-5) m) on ACh response. Similarly, sildenafil (1 x 10(-7) m) augmented significantly the vasorelaxation induced by sodium nitroprusside over the range of 1 x 10(-9)-1 x 10(-8) m. When added to phenylephrine (3 x 10(-6) m)-precontracted rat aortic rings, sildenafil (1 x 10(-9)-1 x 10(-4) m) induced concentration-dependent relaxation reaching a maximum of 96.48 +/- 1.44%. These relaxations were not significantly attenuated by previous incubation with L-NNA (3 x 10(-5) m) or MB (3 x 10(-5) m). Denudation did not significantly affect the vasorelaxant effect of sildenafil. Sildenafil may act in the rat aortic rings through the amplification of NO/cGMP pathway. It may augment both basal endothelial NO function and exogenous NO-dependent vasodilatation. However, sildenafil may act by a mechanism independent of NO/cGMP pathway and this mechanism contributes to its smooth muscle relaxant effect.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.