Abstract

The effect of silane treatment of carboxylic-functionalized multi-walled carbon nanotubes (COOH-MWCNTs) on the thermal properties of COOH-MWCNTs/epoxy nanocomposites was studied by comparing the research results on differential scanning calorimetry and thermogravimetric analysis data of silane treated COOH-MWCNTs/epoxy system with those of as-received COOH-MWCNTs/epoxy system. At the initial curing stage, silane treatment of COOH-MWC- NTs does not change the autocatalytic cure reaction mechanism of COOH-MWCNTs/diglycidyl ether of bisphenol-A gly- cidol ether epoxy resin/2-ethyl-4-methylimidazole (COOH-MWCNTs/DGEBA/EMI-2,4) system, however, silane treatment of COOH-MWCNTs has catalytic effect on the curing process, which could help to shorten pre-cure time or lower pre-temperature. Then, at the later curing stage, silane treatment of COOH-MWCNTs promotes vitrification, which would help to shorten post-cure time or lower post-temperature. Therefore, overall, silane treatment of COOH-MWCNTs could bring positive effect on the processing of epoxy nanocomposites. Furthermore, it was also found that silane treatment of COOH-MWCNTs does not affect the thermal degradation pattern of COOH-MWCNTs/DGEBA/EMI-2,4 system, how- ever, decreases the thermal stability of COOH-MWCNTs/DGEBA/EMI-2,4 nanocomposites.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.