Abstract

Ti–Si–N thin films with different silicon contents are deposited by a cathodic arc technique in an Ar+N2 +SiH4 mixture atmosphere. With the increase of silane Bow rate, the content of silicon in the Ti–Si–N films varies from 2.0 at. % to 12.2 at. %. Meanwhile, the cross-sectional morphology of these films changes from an apparent columnar microstructure to a dense fine-grained structure. The x-ray diffractometer (XRD) and x-ray photoelectron spectroscopy (XPS) results show that the Ti–Si–N film consists of TiN crystallites and SiNx amorphous phase. The corrosion resistance is improved with the increase of silane Bow rate. Growth defects in the films produced play a key role in the corrosion process, especially for the local corrosion. The porosity of the films decreases from 0.13% to 0.00032% by introducing silane at the Bow rate of 14sccm.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call