Abstract

The effect of side grooves on crack mouth opening displacement (CMOD) compliance, distribution of J-integral and crack-tip constraint parameters Q and A2 along the thickness of a clamped single-edge-notched tension (SE(T)) specimen were studied by finite element analysis (FEA). Focus was on the effect of depth of side grooves on J-integral and constraint parameters Q and A2 for shallow and deep cracks. The 3-D results were compared with those of SE(T) specimens in plane strain. The results show that the effective thickness equation used in ASTM E 1820 to evaluate compliance of side-grooved SE(B) and C(T) specimens can be used for clamped SE(T) specimens with reasonable accuracy. The results also suggest that the depth of the side grooves affects the distribution of the J-integral: the highest J-integral is at the center of the thickness for a SE(T) specimen with side grooves equal to or less than 10% of total thickness, and near the root of the side grooves for side grooves greater than 10% for a deeply-cracked specimen when the applied load P≥PY. The FEA results also show that the depth of side grooves affects the distribution of the constraint parameters: the crack-tip constraint is highest at the center of the thickness for a specimen with 0% side grooves (plain-sided), and near the root of the side grooves for side grooves equal to or greater than 10%. It was also found from FEA that the crack-tip constraint of a SE(T) specimen with 20% side grooves with shallow (a/W = 0.2) or deep (a/W = 0.5) crack is higher than that of a SE(T) specimen with the same crack depth in plane strain. As a result, the J-resistance of a SE(T) specimen with 20% side grooves may be lower than that of the same specimen in plane strain.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.