Abstract
Measurements of infinite dilution activity coefficients of 48 molecular solutes (including alkanes, alkenes, alkynes, aromatics, ethers, alcohols, water, ketones, pyridine, thiophene, acetonitrile, and 1-nitropropane) in two ionic liquids (ILs), namely, 1-(2-hydroxyethyl)-3-methylimidazolium dicyanamide and 1-(2-chloroethyl)-3-methylimidazolium dicyanamide, are reported in the temperature range from T = 308.15 to 358.15 K. Comparative analysis of an effect of OH/Cl substitution of terminal carbon in side chains of imidazolium cations is presented and discussed in terms of different types of intermolecular forces acting between ILs and solutes. The new data also are confronted to those published previously for a "plain" counterpart of the studied ILs, namely, 1-ethyl-3-methylimidazolium dicyanamide. Infinite dilution capacity and selectivity of the studied ILs are presented to evaluate them as separating agents in extraction of aromatics from alkanes and sulfur compounds from alkanes. Three modeling approaches, namely, linear solvation energy relationship (LSER), regular solution theory, and conductor-like screening model for real solvents (COSMO-RS), are tested for their capabilities of capturing the substitution effects detected experimentally.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.