Abstract

In aerospace and automobile industries, because of high strength and excellent anti-wear properties, aluminium silicon carbide composites are widely used. Hence, the current work investigates the tribological characteristics of powder metallurgy processed Al7075-x wt.% SiC (x = 10,15 and 20) composites using pin-on-disc equipment. Taguchi’s orthogonal array and analysis of variance are employed to study the effects of input parameters and their levels on output responses. The current study reveals that the wear loss decreases and increases when the reinforcement Wt.% changes from 10 to 20. It is also observed that the wear loss increases with an increase in load. The coefficient of friction increases with an increase in wt.% of reinforcement and sliding distance. The composite with 15 Wt.% SiC exhibits less coefficient of friction and wear loss. The wear effect was determined through morphological studies of worn out surface and worn out debris. The major influencing factors that control wear loss are sliding distance and load. The major influencing factors for coefficient of friction are % reinforcement and sliding distance. SEM analysis revealed that delamination and abrasion are the two-prominent wear mechanisms observed on worn-out surfaces of the specimens.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call