Abstract

Silicon nitride–Si2N2O in situ composites were prepared by hot pressing powder mixtures of α–Si3N4, 6 wt% Y2O3, 1 wt% Al2O3, and 0–12 wt% SiO2. X-ray diffraction (XRD) analysis indicated that the volume percents of Si2N2O were 0, 13, 31, and 54 for the composites prepared with 0, 4, 8, and 12 wt% SiO2, respectively. XRD results also indicated that both silicon nitride grains and Si2N2O grains were laid down perpendicular to hot pressing direction. As the volume percent of Si2N2O increased, the width and the amount of elongated silicon nitride grains decreased, but the fracture toughness increased. Young's modulus of the in situ composites decreased as the Si2N2O content was increased. The erosion rate decreased as the Si2N2O content was increased, in part, due to both the increased fracture toughness and the reduced grain size. Erosion of the composites occurred primarily due to the grain dislodgment. The sample without Si2N2O experienced micro-chipping due to transgranular fracture.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.