Abstract

FeCrNi medium entropy alloy (MEA) has been widely regarded for its excellent mechanical properties and corrosion resistance. However, insufficient strength limits its industrial application. Intermetallic particle dispersion strengthening is considered to be an effective method to improve strength, which is expected to solve this problem. In this work, microstructural evolution and mechanical behavior of FeCrNi MEA with different Si content were investigated. We found that the precipitation of fine σ particles can be formed in situ by thermomechanical treatment of Si doping FeCrNi MEAs. The FeCrNiSi0.15 MEA exhibits a good combination of strength and ductility, with yield strength and tensile elongation of 1050 MPa and 7.84%, respectively. The yield strength is almost five times that of the as-cast FeCrNi MEA. The strength enhancement is mainly attributed to the grain-boundary strengthening and precipitation strengthening caused by fine σ particles.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call