Abstract

From experiments in a chromatographic reactor, under conditions of incipient reaction, the effect of the Si/Al ratio of H-ZSM5 zeolites on the nature of the primary products has been proven in the transformation of methanol into gasoline. It has been determined that alkenes (ethene, propene and butenes) are the first reaction products, the proportion of heavier alkenes being greater as the Bronsted/Lewis ratio increases and as total acidity decreases (decrease in acidic site density). By in-situ FTIR analysis of the adsorbed phase, the presence of surface methoxy groups has been determined. By virtue of the results, a mechanism of propagation–decomposition of oxonium ions has been proposed. This mechanism basically occurs in a phase adsorbed on the zeolite and explains the formation of the first CC bond and the presence in the gas phase of the first products according to a reaction–diffusion compromise for each one of the intermediate products of the mechanism.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.