Abstract

An ultra-low density fiberboard was made of plant fiber using a liquid frothing approach. The inflammability of the plant fiber limited its application as a candidate for building insulation materials and packaging buffering materials. Si-Al compounds were introduced into the foaming system because of the high temperature resistance of Si and Al compounds. The results from energy-dispersive spectroscopy suggested that the Si and Al relatively evenly covered the surface of the fibers, and their weight ratios in the material increased as a function of the amount of Si-Al compounds. The increasing weight ratios of Si and Al affected the fire properties of the material, reducing the released amount of heat, smoke, and off-gases such as CO and CO2, as well as decreasing the mass loss percentage, shown through the use of a Cone Calorimeter. It follows that Si-Al compounds have an evident collaborative effect on the halogen fire retardant. The system can effectively restrain the fire hazard intensity and the yields of solid and gas volatiles.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.