Abstract

ABSTRACTThe effect of Si addition on microstructure and mechanical properties of dual two-phase intermetallic alloys was investigated. Si was added to the base alloy composition Ni75Al9V13Nb3+ 50 wt. ppm B by three substitution ways in which Si was substituted either for Ni, for Al and for V, respectively. The alloys added with 1 at.% Si showed a dual two-phase microstructure composed of Ni3Al (L12) and Ni3V (D022) phases, while the alloys added with over 2 at.% Si exhibited the same dual two-phase microstructure but contained third phases. The third phases were G phase (Ni16Si7Nb6) and A2 phase (the bcc solid solution consisting of Nb and V). Yield and tensile strength of the 1 at.% Si-added alloys were high in the alloy in which Si was substituted for Al but low in the alloys in which Si was substituted for Ni or for V, in comparison with those of the base alloy. Tensile elongation was lower than that of the base alloy irrespective of substitution ways. The density of the Si added alloys was close to or slightly lower than that of the base alloy. Oxidation resistance of the Si added alloy was increased. Si addition to the dual two-phase intermetallic alloys is beneficial for reducing the density and enhancing the oxidation resistance without a harmful reduction of strength properties.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call