Abstract

ABSTRACTThe coherent jet technology was widely used to improve the stirring effect of molten bath in steelmaking field, and the key to this technology was to form a low-density zone around the main oxygen jet by a high-temperature shrouding flame. With this revelation, a shrouding nozzle was processed to a Laval nozzle structure fitted with a loop arrangement for increasing the velocity of shrouding jet. For further increasing the area of the low-density zone, the preheating method was also adopted in this new coherent lance structure. In this paper, the effect of Mach number of the shrouding nozzle on the flow field of the coherent jet was investigated at room and high ambient temperature using numerical simulation and experimental studies. The result represented the simulation model used in this research showed good agreement with the experimental data at the texted conditions. Although the shock wave formed by the shrouding jet removed more kinetic energy form the main oxygen jet, the impaction ability of the coherent jet was much bigger than that of conventional supersonic jet, and this phenomenon would be further strengthen if ambient temperature and Mach number of the shrouding nozzle increases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.