Abstract

Targeted near-infrared (NIR) fluorescence probes are playing a significant role in biomedical imaging because NIR penetrates deeper into tissues and is associated with reduced autofluorescence compared to visible light fluorescence probes. Long-wavelength emitting 4,4-difluoro-4-bora-3a,4a-diaza-s-indacene (BODIPY) is an attractive platform for synthesizing NIR fluorophores because of its high photostability, high molar absorption coefficient, and sharp absorption and emission spectra. However, its lipophilicity hampers the conjugation chemistry necessary to add targeting moieties. In this study, we synthesized a novel NIR BODIPY derivative, NMP14. Substitutions of ethylene-bridged pyrrole units at the 3- or 5-position of the parent BODIPY chromophore result in a red shift of more than 200 nm. However, NMP14 cannot be conjugated to antibodies because of its hydrophobicity. Therefore, we synthesized NMP13 by adding short poly(ethylene glycol) to NMP14 and successfully conjugated NMP13 to cetuximab and trastuzumab. In vitro microscopic studies showed that NMP13 conjugated antibodies were activated after internalization and lysosomal processing, which means that NMP13 acts as an activatable probe only turning on after cellular internalization. After the administration of NMP13 conjugated antibodies, mice tumors were detected with high tumor to background ratios for a long period. These results suggest that NMP13 has potential as an activatable fluorescence probe for further clinical applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call