Abstract

Short carbon fibre (Cf) reinforced TiCN-based cermets (Cf/TiCN composites) were produced by powder metallurgy method with pressureless sintering technology. The phase evolution, microstructure and fracture morphology of Cf/TiCN composites were investigated. The results showed that TiC, TiN, WC, Cr3C2 and Mo phases disappeared gradually and diffused into core and rim phases by dissolution–reprecipitation process, finally formed new hard TiCN core phases and complex compound (Cr, W, Mo, Ti)(CN) rim phases, with the sintering temperature increasing. The added Cf did not change the ‘core–rim’ microstructure but improved the mechanical properties of TiCN-based cermets. The Cf/TiCN composite containing 3 wt-% Cf achieved the best comprehensive mechanical properties, with fracture toughness and bending strength increasing by about 14.4% and 30.8%, respectively, when compared with the composite without Cf. Toughening and strengthening mechanisms of Cf/TiCN composite were concluded as crack deflection and branch, as well as the pull-out, fracture and bridging of carbon fibres.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.