Abstract

AbstractThe effect of shear work at solid boundaries for parallel plates and a micropipe is considered to analyze the heat transfer characteristics in the slip flow region for gaseous flow. The fluid flow is assumed to be laminar, incompressible, steady, and hydrodynamically and thermally fully developed. The effects of second‐order velocity slip, temperature jump, shear work at the solid surface, and viscous dissipation are considered. The constant heat flux boundary condition is used at the surface of the parallel plates and of the micropipe. Closed‐form expressions are obtained for the temperature distribution and Nusselt number as a function of various modeling parameters for both geometries. The results show that neglecting the shear work underpredicts the Nusselt number.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.