Abstract

Fully turbulent inflow past a coaxial side branch resonator mounted in a duct can give rise to pronounced flow oscillations due to coupling between separated shear layers and standing acoustic waves. Experimental investigation of acoustically-coupled shear layers is conducted using digital particle image velocimetry in conjunction with unsteady pressure measurements. Global instantaneous flow images, as well as phase-averaged images, are evaluated to provide insight into the flow physics during tone generation. The emphasis is on the effect of shear layer interaction on the acoustic response of the resonator during the first and second hydrodynamic modes of the shear layer oscillation. Onset of the locked-on resonant states is characterized in terms of the acoustic pressure amplitudes and the quality factors of the corresponding spectral peaks. Moreover, patterns of generated acoustic power are calculated using a semi-empirical approach. As the level of interaction between the separated shear layers is increased, spatial structure of the acoustic source undergoes a substantial transformation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.