Abstract

Polypropylene undergoes permanent alterations during the processing and manufacture of cables due to shear effects, which in turn affect all of its qualities. There are currently few research papers on the modulation of material structure and many performance parameters by the shear stress field. In this study, we examined the impact of various shear levels on the structural, mechanical, and electrical properties of polypropylene, as well as their relationships. The results indicated that shear strength decreased the material’s viscosity and oxidation resistance. As shear duration increased, crystallinity began to diminish. In the meantime, the crystallinity improved as the shear temperature rose. The thermal elongations of the sheared samples were all about 5%. Short-term shearing boosted the material’s toughness, but as the degree of shear continued to increase, the material’s toughness and rigidity steadily decreased. The storage modulus of the material decreased with increasing shear, the loss peak initially increased and subsequently decreased, the peak position shifted from low to high temperature, and the loss factor was relatively small. In samples sheared for brief periods, an accumulation of space charge and an increase in its nonlinear threshold field strength were observed. With increasing shear time, the material’s space charge accumulation was repressed, the current density initially grew and then reduced, and the nonlinear threshold field strength initially fell and then increased. Under shearing, the electrical strength of the material increased by approximately 2%. In addition, the presence of an antioxidant improved all of the aforementioned features.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call