Abstract
In this note, we analyze the effect of cell shape on the dielectric and conductometric behavior of biological cell suspension, in a frequency range where the interfacial polarization characteristic of highly heterogeneous systems occurs. We consider two different families of curves, both of them capable of generating a variety of symmetric or asymmetric shapes, ranging from oval, to dog-bone like, to lemniscate curves. These curves, which differ from those generally employed in dielectric models of biological cell suspensions, describe in principle different cells including discocytes, cup-shaped cells, pear-shaped cells, dumbbells and cells with spherical protrusions or invaginations. Our analysis, based on a numerical solution of the Laplace equation by means of boundary element methods, is carried out in the attempt of separating the contributions associated with the different electrical properties of the dielectric media involved from the ones mainly associated with the shape of the cell. We determine the dielectric strength of the dielectric dispersion for a variety of cell shapes and the phenomenological correlation between this parameter of the relaxation and the cell geometry is briefly discussed and commented.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.