Abstract
We have used the density functional theory to study the effect of molecular elongation on the isotropic-nematic, isotropic-smectic A and nematic-smectic A phase transitions of a fluid of molecules interacting via the Gay-Berne intermolecular potential. We have considered a range of length-to-width parameter 3.0 < or = x(0) < or = 4.0 in steps of 0.2 at different densities and temperatures. Pair correlation functions needed as input information in density functional theory are calculated using the Percus-Yevick integral equation theory. Within the small range of elongation, the phase diagram shows significant changes. The fluid at low temperature is found to freeze directly from isotropic to smectic A phase for all the values of x(0) considered by us on increasing the density while the nematic phase stabilizes in between isotropic and smectic A phases only at high temperatures and densities. Both isotropic-nematic and nematic-smectic A transition density and pressure are found to decrease as we increase x(0). The phase diagram obtained is compared with computer simulation result of the same model potential and is found to be in good qualitative agreement.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.