Abstract

This study mainly explored the effect and mechanism of Src homology 2 (SH2) B adaptor protein 1 (SH2B1) on cardiac glucose metabolism during pressure overload-induced cardiac hypertrophy and dysfunction. A pressure-overloaded cardiac hypertrophy model was constructed, and SH2B1-siRNA was injected through the tail vein. Haematoxylin and eosin (H&E) staining was used to detect myocardial morphology. ANP, BNP, β-MHC and the diameter of myocardial fibres were quantitatively measured to evaluate the degree of cardiac hypertrophy, respectively. GLUT1, GLUT4, and IR were detected to assess cardiac glucose metabolism. Cardiac function was determined by echocardiography. Then, glucose oxidation and uptake, glycolysis and fatty acid metabolism were assessed in Langendorff perfusion of hearts. Finally, PI3K/AKT activator was used to further explore the relevant mechanism. The results showed that during cardiac pressure overload, with the aggravation of cardiac hypertrophy and dysfunction, cardiac glucose metabolism and glycolysis increased, and fatty acid metabolism decreased. After SH2B1-siRNA transfection, cardiac SH2B1 expression was knocked down, and the degree of cardiac hypertrophy and dysfunction was alleviated compared with the Control-siRNA transfected group. Simultaneously, cardiac glucose metabolism and glycolysis were reduced, and fatty acid metabolism was enhanced. The SH2B1 expression knockdown mitigated the cardiac hypertrophy and dysfunction by reducing cardiac glucose metabolism. After using PI3K/AKT activator, the effect of SH2B1 expression knockdown on cardiac glucose metabolism was reversed during cardiac hypertrophy and dysfunction. Collectively, SH2B1 regulated cardiac glucose metabolism by activating the PI3K/AKT pathway during pressure overload-induced cardiac hypertrophy and cardiac dysfunction.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.