Abstract
This study investigated the relation between biomechanical properties of the proper hepatic artery and sex in pigs and humans to provide the theoretical basis for selecting suitable donor in pig-to-human liver xenotransplant. The proper hepatic arteries of 32 Chinese Hubei white pigs (8 males, 8 females, 8 castrated males, and 8 ovariectomized females) and 10 deceased donors (5 human men, 5 human women) were obtained. The pressure-diameter relations of the proper hepatic arteries were measured on biomechanical test equipment to calculate the incremental elastic modulus (Einc), pressure-strain elastic modulus (Ep), volume elastic modulus (Ev), and compliance. Each sample was sliced into 5-μm frozen sections and stained with hematoxylin-eosin. There were significant differences in Einc (F=10.24; P = .001), Ep (F=3.75; P = .001), and Ev (F=3.41; P = .002) of the proper hepatic arteries of female, male, and gonadectomized pigs; females had the lowest elastic modulus and the gonadectomized group had the highest (P < .01). There was a significant difference in compliance of the porcine proper hepatic arteries between the sexes, highest in the female group and lowest in the gonadectomized group (P < .01). No difference in the elastic modulus and compliance of the proper hepatic artery between the male pig and the human man. There was no difference between the female pig and the human woman. There were differences in the biomechanical properties of the proper hepatic arteries of the female, male, and gonadectomized pigs. The biomechanical properties of the human men/women proper hepatic artery match those of the porcine male/female hepatic artery. The correlation between sex and biomechanical properties of the proper hepatic artery in pigs could imply that a pig of the same sex should be chosen for pig-to-human liver xenotransplant.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.